Date of Award

Spring 2020

Degree Name

Bachelor of Arts

Department

Computer Science & Mathematics; College of Arts & Sciences

First Advisor

Dr. Carlos Ortiz

Abstract

Neural ordinary differential equations (ODEs) have recently emerged as a novel ap- proach to deep learning, leveraging the knowledge of two previously separate domains, neural networks and differential equations. In this paper, we first examine the back- ground and lay the foundation for traditional artificial neural networks. We then present neural ODEs from a rigorous mathematical perspective, and explore their advantages and trade-offs compared to traditional neural nets.

Share

COinS
 

Exploration and Implementation of Neural Ordinary Differential Equations

Neural ordinary differential equations (ODEs) have recently emerged as a novel ap- proach to deep learning, leveraging the knowledge of two previously separate domains, neural networks and differential equations. In this paper, we first examine the back- ground and lay the foundation for traditional artificial neural networks. We then present neural ODEs from a rigorous mathematical perspective, and explore their advantages and trade-offs compared to traditional neural nets.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.