
Where Did The Time Go?
John Viaud, Bilal, Vitali, Dr. Jia Yanxia

Arcadia University, Glenside PA

INTRODUCTION

Study shows that most people spend a full quarter of their active hours on their mobile
device, limiting productivity and potentially taking a toll on their health. Our Android
application is able to track and visualize device usage to help users understand how
much they use their devices.
At the start of building this application Android Digital WellBeing was not available to the
public and iOS Screen Time had recently been released. So to separate ourselves from
these other apps we tried to focus on what made those two apps great and where they
could use some improvements.
As a result our application focuses heavily on the user interface and user experience as
well as personalizing the data being presented by allowing users to set goals that are
projected over the data we collect.

MOTIVATION

Incoming college students often face difficulty with time management because they
spend excessive amounts of unnecessary time on their cell phones. We were motivated
to create a user friendly app that will help users better manage their time. We want
people to have an app that allows them to track how often they pick up their phone as
well as opens specific apps. This app will help people use their time wisely. This app is
useful in time management for anyone but particularly for new students who have to
adjust to their new schedule and classes. Many people often spend a lot of time on
some apps and they may be unaware of how long they are on it. Users will be able to
set goals for themselves for the amount of time they want to spend on certain apps. We
also wanted to improve the functionalities of Apple’s Screen time and Androids Digital
wellbeing apps which are similar to our app.

USER INTERFACE / USER EXPERIENCE

Navigating iOS’ Screen Time can be exhausting, at times I find myself having to relearn
how to access certain features or being completely unaware a feature exists. As a
result, even though Screen Time has an excellent design, the user experience leaves
much to be desired. Alternatively, Android’s Digital Wellbeing has a simple navigation
but an even simpler and dated UI.
When designing our application, we aimed for a modern look that would best display the
large amounts of data we are collecting from our users without overwhelming them. This
means that pages must be sophisticated to a degree that does not confuse users but
simplistic enough to be intuitive. To achieve this we followed Google’s Material Design
guidelines while also looking for inspiration from other apps.

Android Digital Wellbeing iOS Screen Time
Color
One of the most important points when designing a UI is color. We can use color to
create depth and draw the users attention to places we deem to be important. It is also
important to establish a theme, which is a set of colors that will be consistently used
throughout our app to make our application feel more harmonious and help users
become more familiar with our app.

Color, like size, can also be used to represent a hierarchy. As you can see in the
example below, There is a clear hierarchy in titles. The first title has a value of white
(#FFFFFF), then the titles within the list view also have a value of white but has a
reduced opacity of 87% (#DEFFFFFF) and finally its content has a further reduced
opacity of 60% (#99FFFFFF)

Color 1

Gradient

Gradient 1 Gradient 2
Here we use a gradient effect to give a cardview the illusion of depth. In the examples
above, both images have the same color purple but the second image appears flat
whereas the first has the illusion of depth and draws the users eyes, telling them that
this is an area that requires attention.

Elevation
Elevation also allows us to directly create depth by putting a shadow behind our
content, the darker the shadow the higher the elevation. This lets the user know that this
particular content with an elevation is a potential point of interest.

Elevation 1

Here we direct the user to useful information like today’s statistics and a tabbed
navigation.

SYSTEM ARCHITECTURE

At the core of our app is Android’s Broadcast Receiver which is a system service built
into the Android operating system that will wake and notify our application when a
designated event occurs.
Notification Listener Service

● Notification Listener is a ​Broadcast Receiver​ that sends alerts to our application
whenever a notification is received by the system.

● Due to security measures implemented by Google, restrictions have been made
to disallow certain Broadcast Receivers from being generically created in the
Android Manifest allowing the service to start our app to collect data from the
Broadcast Receiver.

● To go around this we start and register this Receiver in a Background Service to
allow us to always run and send data to our application.

● Similar to the Usage Stat Manager, Notification Listener is a protected
permission so we can not conduct a self check but we can start the activity to
allow the user to give our application the correct permission. We then check to
see if the Listener has been connected, which is a default method that is
triggered when the Listener successfully starts.

Unlock Listener
● Unlock Listener is a custom Class that extends Broadcast Receiver and is

registered with an ​IntentFilter​ of ​ACTION_USER_PRESENT​.
● This receivers is triggered whenever a user unlocks their device

App Change Listener
● App change Listener is a custom Class that extends Broadcast Receiver and is

registered with an IntentFilter of ​ACTION_PACKAGE_ADDED​ ​and
ACTION_PACKAGE_REMOVED

● Because we keep a list of all other applications installed on the device we need
to be notified when there are changes. This receiver is triggered whenever a user
adds or removes an app allowing us to only reconstruct the list when necessary.

Background Service
Android offers applications the ability to run in the background as a service. This is
useful for us for a couple of reasons. The only thing that is required is a sticky
notification letting the user know our app is running.

https://developer.android.com/reference/android/service/notification/NotificationListenerService
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/IntentFilter
https://developer.android.com/reference/android/content/Intent#ACTION_USER_PRESENT
https://developer.android.com/reference/android/content/Intent#ACTION_PACKAGE_ADDED
http://action_package_removed/

● Because we are polling usage data our app must be active to run the polling, the
background service allows our app to run silently in the background as it
continues to poll for usage data.

● Due to security concerns, Android had limited the ability of broadcast receivers
only allowing certain receivers to wake apps making others only available while
the registered application is running. The broadcast receivers used by our
application are not exempt from these restrictions but since our application is
always running we can get around this.

Usage Stats Manager
● USM is a system service that polls the system for apps in use. It gathers basic

information like the package name of the app in question and usage in
milliseconds over a specific period in time.

● USM stores this data in a HashMap<String,​UsageStats​> where the Key is the
package name of the app and the value is a UsageStats object.

● UsageStats
○ This object allows us to conduct basic queries such as getting the

corresponding application’s package name, total usage for the specified
period of time and the #​getLastTimeUsed​() which returns a long.

● Because this permission is protected by Android, non system apps can not
properly check for this permission. The activity to receive the permission can be
started but a standard self check will always return false regardless if the app has
the permission.

● To go around this we create an Object of USM and try to query data for our own
application for the last 1 minute, if the query is unable to return data then we
assume we do not have the permission.

Polling
Originally we were set out to use USM to poll all usage data whenever the user starts
our app since USM is capable of gathering data from any given time period. However,
due to a bug in USM, it ignores the period of time we specify and provides us with
incorrect data. Because we can no longer get the usage data retroactively we must
continuously collect the data ourselves
Manual Polling (Usage)

● Since our application is always running in the background we can manually
collect and store usage data.

● Android’s Package Manager has the ability to check what apps are currently
running but these methods have since been deprecated due to security
concerns. Alternatively, USM works well enough that it always returns the most
recent usage data. We can not cherry pick time intervals within this collection but

https://developer.android.com/reference/android/app/usage/UsageStats
https://developer.android.com/reference/android/app/usage/UsageStats#getLastTimeUsed()

since we know this is always the most recent data we can order them in a
SortedMap​ by the last time they were used.

● It will be extremely inefficient and resource consuming for our application to
collect and store data every 1 second since we have to sort a Map whose size
we cannot guarantee then add to a database. We can assume there will be too
much collision even in a background thread. To combat this we only poll every 1
minute.

○ Every minute we check to see what was the last app used at the end of
that minute and assume it was used for that whole minute.

○ Points of Error
■ If multiple apps were used with this minute then only the last app is

recorded
■ If an app is opened at exactly the 59th second then it will be

recorded as being used for the whole minute
○ Because of these errors the usage being reported has an error of about

+/- 59 seconds
Manual Polling (Unlocks + First App Used)

● Android provides easy methods to check if the the device is locked with
KeyGuardManager

● We can also see if the device is unlocked by registering a BroadCast Receiver
with an ​IntentFilter​ of ​ACTION_USER_PRESENT​ which is triggered whenever
the device is unlocked.

● From here we can use the same method as tracking usage to see what is the
first app used during the period from when the phone was locked and then
unlocked.

Manual Polling (Notifications)
● Notifications do not need to be manually polled. The Notification Listener will

notify our application of any notifications.
Database (SQLite)
Usage Table

ENTRY_ID USAGE_DATE HOUR_OF_DAY PACKAGE_NAM
E

UNLOCKS_COUNT NOTIFICATIONS_COUNT USAGE_TIME APP_CATEGORY

ENTRY ID​:
STRING, PK, combination of package name date and hour of day
REQUIRED BECAUSE IT IS USED TO PURPOSELY THROW
SQLConstraintException to check if an app has already been inserted.
USAGE_DATE​: STRING, Date the usage represents, must be in yyyy-MM-dd format
HOUR_OF_DAY​: INTEGER, The hour of the current day from 0-23

https://docs.oracle.com/javase/7/docs/api/java/util/SortedMap.html
https://developer.android.com/reference/android/app/KeyguardManager
https://developer.android.com/reference/android/content/IntentFilter
https://developer.android.com/reference/android/content/Intent#ACTION_USER_PRESENT

PACKAGE_NAME​: STRING, The name of the package that the current stats belong to
UNLOCKS_COUNT​: INTEGER, The number of times the app was the first one opened
after an unlock event
NOTIFICATIONS_COUNT​:INT, The number of notifications the app has received
USAGE_TIME​: REAL (LONG), The amount of time the app has been used in
milliseconds
APP_CATEGORY​: The category a particular app belongs to as determined by the
Android OS

Goal Table
ENTRY_ID: ​INTEGER PRIMARY KEY AUTO INCREMENT
GOAL_DATE: ​STRING, Date of goal in yyyy-MM-dd format
GOAL_TYPE: ​STRING, Goals can either be a “PHONE_GOAL” or an “APP_GOAL”
GOAL_USAGE:​REAL (LONG), The amount of time specified for the usage goal
GOAL_UNLOCKS:​ INTEGER, The number of unlocks specified
PACKAGE_NAME: ​STRING, The package name of the app specified if applicable
GOAL_STATUS:​INTEGER, The status of the overall goal (Pass or Fail)
USAGE_STATUS: ​INTEGER, The status of the usage goal (Pass or Fail)
UNLOCK_STATUS:​ INTEGER, The status of the unlock goal (Pass or Fail)

Attribute References
By giving views references to colors and styles instead of hardcoding them, we can
easily change the value of the references in a single location to have the changes take
effect across the entire app. We take advantage of this when implementing the dark
mode feature to quickly change the colors of all the views across the application when
the user changes between light and dark mode.

FEATURES

Goals
Users have the ability to set goals for themselves, this is different from the limits in that
the goals are not enforced. Goals are merely superimposed onto the usage data that we
are already collecting so users can have a better understanding of how much they use
their device and to personalize the data.
Since users do not have any control over what application sends them a notification,
goals are limited to only usage time and number of unlocks.

Settings page
On the settings page there are general settings, parental controls, and advanced
settings.
General
In the general settings, users can select which apps they want to track on the phone by
selecting an app, if the user wants to stop tracking an app on the phone, users can
deselect an app which completely removes that app from the database so it’ll no longer
be tracked.
Dark Mode
Dark mode allows users to change the theme of the app from light to dark. This will
completely change the color display on all parts of our app.
Parental Controls
In the parental control setting of our app, users can set two limits for their phone. One
for phone limits and one for app limits.
Phone Limit
If a user clicks on the phone limit, they can set a specific phone limit for the total usage
of their phone. This will be shown by the timer on the homepage that is counting down
from the limit that was set. Once this limit reaches 0, the user will receive a notification
that says your phone usage for today has been reached. So you can no longer use
apps on the phone. If you try to still use apps on the phone the notification will pop back
up and once you press okay, you’ll be redirected back to our app.
App Limits
For app limits, users can select which apps they’d like to limit for the day. Once they set
a time limit for an app, it’ll be displayed in time limit apps.
Wifi
Users can turn wifi access on or off. One Wifi access is turned off the user will not be
able to connect to the internet via wifi unless this setting is turned off from the
application
Advanced Settings
For the Advanced settings, users can export to csv which allows users to view a usage
report of specified data from the app.

LIMITATIONS

Certain functions of the application are limited due to security restrictions put in place by
Android. For example there are a number of Broadcast Receivers, Permissions and services
that are System Protected and can only be accessed by a system application.

There is also the issue of certain methods that would have made our application more efficient
being deprecated.

LIBRARIES

Hello Charts
Lottie
InkPageIndicator
MaterialFilePicker
OpenCSV

FUTURE WORK

● Improve efficiency of application
● Expand upon the Goals functions
● Add the option to import data
● Maybe store data on the cloud so users can access their usage information from

anywhere (like a Webpage)

https://github.com/lecho/hellocharts-android
https://github.com/airbnb/lottie-ios
https://github.com/DavidPacioianu/InkPageIndicator
https://github.com/nbsp-team/MaterialFilePicker
http://opencsv.sourceforge.net/

