
Exploration and Implementation of Neural Ordinary
Differential Equations

Long Nguyen, Andy Malinsky
Department of Computer Science

Mathematics
Arcadia University

Glenside, Pennsylvania 19038 USA

April 21, 2020

Abstract

Neural ordinary differential equations (ODEs) have recently emerged as a novel ap-
proach to deep learning, leveraging the knowledge of two previously separate domains,
neural networks and differential equations. In this paper, we first examine the back-
ground and lay the foundation for traditional artificial neural networks. We then present
neural ODEs from a rigorous mathematical perspective, and explore their advantages
and trade-offs compared to traditional neural nets.

Contents
1 Introduction 2

2 Artificial Neural Networks 2
2.1 Example of a Neural Network . 2
2.2 The General Set-up . 5
2.3 Gradient Descent . 7
2.4 Back Propagation . 9
2.5 Neural Network Implementation in Julia . 11

3 Neural Ordinary Differential Equations 12
3.1 Residual Neural Networks . 12
3.2 The General Set-Up . 13
3.3 Adjoint Method . 14
3.4 Strengths and Limitations . 17
3.5 Augmented Neural ODE . 19
3.6 Mathematical Modeling . 19
3.7 Neural ODE Implementation in Julia . 22

1

4 Conclusion 22

1 Introduction
Deep learning is a subset of machine learning, which in turn is a subset of artificial intelli-
gence. To automate a computer’s learning process, this class of algorithms and numerical
methods utilize artificial neural network architectures, loosely inspired by biological neural
networks found in the human brain. Recent astonishing successes in accurate predictive
modeling and self-teaching algorithms have been attributed to a combination of mathemat-
ical knowledge, computer engineering advances, and most importantly the unprecedented
availability of training data in the modern era. The magic behind the scenes, however, is a
simple framework rooted in matrix and vector multiplication, as well as differentiation rules
[8]. Therefore, the extension of neural networks into the differential equations field in recent
years have really opened up new and exciting areas of research for deep learning. In this
paper, we address the use of ordinary differential equations implemented with deep neural
networks to further improve training efficiencies.

Section 2 introduces and explains the essential concepts and mathematics behind artifi-
cial neural networks, together with a simple classification example. General notations are
established to facilitate discussions about neural networks, and later on, neural ODEs. Then,
we present the gradient descent method and its proof to finally generalize a back propagation
algorithm. Section 3 extends the conception of neural networks with differential equations,
showing the motivation of neural ODEs from the use of residual neural networks. Similar
to traditional nets, we introduce and examine a back propagation algorithm via the adjoint
method.

In addition, each section includes a programming implementation in the Julia language
to demonstrate neural networks and neural ODEs in action. While many robust and elegant
machine learning libraries are available, such as the Julia-native DiffEqFlux.jl [13] package,
we attempt to build our framework from scratch as much as possible in order to augment
our understanding of neural nets, and also to provide a guide for others interested in what
goes on under the hood. All the codes in this paper are attached in the Appendix, and can
be accessed from this Github repository.

2 Artificial Neural Networks
This section introduces and explains the notations and mathematical foundation of artificial
neural networks.

2.1 Example of a Neural Network

In essence, neural networks are valuable tools to make future predictions based on currently
available data. The architecture is applicable to many different family of problems, but
we choose a classification one to demonstrate its ability of extrapolating hidden dynamics
purely from data. Two main approaches to the classification problems in machine learning are
supervised and unsupervised algorithms: while supervised learning attempts to approximate

2

https://github.com/lhnguyen-vn/MathematicsCapstone-NeuralODE

the mapping of inputs to desired, labeled outputs, the unsupervised approach learns to
group data point without predetermined categories. For example, say we have a collection
of images of animals, and aim to develop a computer model to automatically distinguish the
different species. A supervised network is provided with the species label of each image to
govern the learning direction and improve its accuracy. However, an unsupervised method
will be responsible for generating its own classes and categories by clustering or association
algorithms.

To keep our example simple without sacrificing generality, we choose a relatively straight-
forward binary classification problem. We first define an arbitrary equation as the classifying
model, here x3−3x+2 in Figure 1, to split the R2 space into two groups, where points above
or on the model are labeled 1, while others are labeled 0. The objective is for a neural net-
work to learn this hidden model with a randomly generated collection of data points, together
with their corresponding labels. As such, this example utilizes the supervised approach to
machine learning.

Figure 1: An arbitrary equation, here x3 − 3x + 2, is chosen as the true classifying model.
This is the function we want our neural network to ultimately capture.

Given this model, we generate a collection of data points in the space and label them ac-
cordingly. As the neural network only has access to this data set in training, we demonstrate
its ability to approximate hidden dynamics without the need for explicit models.

Represented and depicted by neural circuits, biological neural networks are thought of
as an interconnected system of neurons, where chemical and electrical signals traverse to
activate different functions of the human brain. An artificial neural network, inspired by
this system, is constructed in a similar manner as multiple layers of neurons. Figure 3, for
instance, displays an artificial neural network with four layers. The first layer, namely the
input layer, is where the input data enters the network. The last layer is known as the output
layer, storing the outputs produced by the network. Every layer in between is known as a
hidden layer, where mathematical computations transform the inputs into the outputs.

In the simplest form, each neuron in layer l are only connected to each neuron in layers
l−1 and l+1. At each hidden layer, the output from the previous layer is taken as input, and

3

Figure 2: Labeled data points. Blue points in the graph lie on or above the model equation,
and so are labeled 1. Red points are labeled 0 and lie below the model equation.

in turn its output is the input of the next layer. Each connection between a pair of neurons
carries a weight value, which is what we want to optimize during the training process.
Every neuron outputs a single real number, and this real number is then multiplied by the
corresponding weight value before an additional predetermined and constant bias value is
added. From a given layer l, we can represent all the real number outputs as a vector a, all
the weights as a matrixW , and all the constant biases as a vector b. Thus, let x be the vector
of outputs from a layer l, then it is calculated using the formula x = Wa+ b. An activation
function, usually one that maps to the range from 0 to 1, is applied to each output before x
is sent to the next layer. An example of a commonly used nonlinear activation function is
the sigmoid function, defined by σ(x):

σ(x) =
1

1 + e−x
(1)

It is important to note that at layer l the number of columns in W matches the length of
vector a from the previous layer l− 1, and the number of rows matches the length of vector
a at the current layer l. The length of vector b also matches the number of neurons at the
current layer l.

Taking Figure 3 as an example, we can apply our mathematical notations, as adapted
from [8], to help us denote the computations at each layer. Since the input layer has two
neurons, the input data is a vector a ∈ R2. We have established the corresponding dimensions
of the weights and biases in the next layer above, they will be represented as a matrix
W [2] ∈ R2x2 and a vector b[2] ∈ R2, respectively. The resulting output from layer two
therefore is computed as

σ(W [2]a+ b[2]) ∈ R2.

At this point, the output from layer two will serve as input to layer three. Since the
third layer has three neurons, and the received input is in R2, we respectively represent the
weights and biases in layer three as a matrix W [3] ∈ R3x2 and a vector b[3] ∈ R3. The output

4

Input

Input

Output

Output

Hidden
Layer 1 Hidden

Layer 2

Input
layer

Output
layer

Figure 3: A neural network with four layers [8].

of layer three is then
σ(W [3]σ(W [2]a+ b[2]) + b[3]) ∈ R3.

Finally, the output from layer three is taken as input to layer four, the output layer.
Here, the output layer has only two neurons, and the received input is in R3. Consequently,
the weights and biases are a matrix W [4] ∈ R2x3 and a vector b[4] ∈ R2, respectively. The
resulting output from layer four, and the entire neural network in general, is thus

F (x) = σ(W [4]σ(W [3]σ(W [2]a+ b[2]) + b[3]) + b[4]) ∈ R2. (2)

Equation (2) captures the underlying mapping of our neural network. The goal of training
is to pick and choose the appropriate weights and biases, or optimize the parameters, such
that the output can be used to maximize some objectives or to minimize some costs. In
the context of our binary classifier example, we would like F (x) to be able to predict the
actual labels as as accurately as possible. A simple scheme is to assign the label 1 for any
non-negative value of F (x), and the label 0 otherwise. As such, given any data point x ∈ R2,
we could run its coordinates through the neural network and assign the appropriate label.

In order to evaluate the performance of our neural network and to adjust training tra-
jectories accordingly, we require a cost function. Essentially, the role of the cost function
is to measure the difference between the obtained output and the desired one. To achieve
a reasonable classification accuracy would most likely require more than just one iteration
through the data set. At each iteration, we will adjust the weights and biases in such a
way that minimizes the cost function. As such, training a neural network is an optimization
problem where we hope to find a global minimum, or a local minimum close enough. Figure
4, for instance, plots the results of our simple neural network after training against the true
model. We observe that while not perfect, our neural network performs fairly well, especially
when we only use one hidden layer in training.

In the next section, we will generalize the neural network setup for any arbitrary number
of layers.

2.2 The General Set-up

Let us revisit the point that a neural network model consists of multiple layers to transform
the input into the output. A general layer consists of a number of neurons, receiving from

5

Figure 4: Visualization of prediction output from an artificial neural network applied to the
data in Figure 2.

each neuron of the previous layer and contributing to every neuron of the next. As inspired
by biological neural networks, an activation function is applied to the neurons of each layer
before their real values are passed to the next. The first layer is the input to the model, and
the last is the output produced. In between are hidden layers, the intermediary computations
of the neural network.

We now introduce mathematical notations for neural networks that will be used for the
remaining of this paper. The notations are consistent with C. Higham and D. Higham’s
paper [8], and aim to formulate and define neural networks using mathematical conventions.

A generalized neural network contains L layers, each layer l in turns contains nl neurons.
Thus, the network takes in an input from Rn1 and return an output in Rnl . In addition,
the weights and biases at layer l shall be denoted by W[l] ∈ Rnl × Rnl−1 and b[l] ∈ Rnl ,
respectively. We use w[l]

jk to denote a specific weight applied to the neuron k of layer l− 1 to
produce the neuron j of layer l. By the same token, b[l]

j denotes the bias of the neuron j at
layer l.

Figure 5 visualizes a neural network with L = 5 layers. Using the introduced notations,
the number of neurons at each layer is n1 = 4, n2 = 3, n3 = 4, n4 = 5, and n5 = 2. The
weights are W[2] ∈ R3×4, W[3] ∈ R4×3, W[4] ∈ R5×4, W[5] ∈ R2×5; and the biases are
b[2] ∈ R3, b[3] ∈ R4, b[4] ∈ R5, b[5] ∈ R2.

We further denote z[l]
j to be the intermediate output for neuron j at layer l, before the

activation function is applied. We then denote a[l]
j to be the output of neuron j at layer l, after

the activation function is applied. We can then formulate the algorithm for a generalized
neural network as follows:

z[l] = W[l]a[l−1] + b[l] (3)

a[1] = x ∈ Rn1 (4)

a[l] = σ(z[l]), forl = 2, 3, . . . , L (5)

6

Output

Output

Layer 1
Input
Layer

Hidden
Layer 1 Hidden

Layer 2 Hidden
Layer 2

Layer 5
Output
Layer

W
[3]
43

Figure 5: A neural network with five layers. The highlighted path denotes the weight applied
to neuron 3 of layer 2 and then fed to neuron 4 in layer 3.

To train the neural network, training data need to be fed into the model and evaluated.
Suppose the training set consists of N inputs in Rn1 , {x{i}}Ni=1, and the corresponding out-
puts in RnL , {y{i}}Ni=1. Feeding the inputs to the model will produce the corresponding
predictions, a[L](x{i}). In order to assess the accuracy of the neural network for training and
validation, a cost objective to measure the error between the predictions and the observed
outputs is generalized as

Cost =
1

N

N∑
i=1

c(y(x{i})− a[L](x{i})), (6)

where c is the chosen cost function. In the case of quadratic cost, the objective to be
minimized is

Cost =
1

N

N∑
i=1

1

2
||(y(x{i})− a[L](x{i}))||22. (7)

The factor 1
2
is included for simplification purposes later on with differentiation. In the

next section, we will explore how to optimize the cost objective for neural networks.

2.3 Gradient Descent

In general, deep learning using neural networks aim to find the optimal weights and biases
that minimize the cost objective. To simplify the notations, we imagine they are flattened
into a single parameter vector p. The cost objective can then be characterized as a function
of s parameters, mapping from Rs to R.

Traditionally, this optimization problem can be solved by taking the partial derivative of
the cost objective with respect to each parameter, and setting the partial derivatives to 0 to
formulate a system of equations. However, considering that neural networks typically utilize
a large number of parameters, it is not computationally efficient to solve for the optimal
solution.

7

Instead, the method of choice in deep learning is gradient descent, where we generate a
sequence of vectors in Rs to iteratively approximate the optimal solution that minimizes the
cost function. Suppose the initial parameter vector is p, our goal is to find the appropriate
change ∆p to compute the next iteration. We recall that the cost objective can be expanded
using the Taylor series [14]:

Cost(p + ∆p) = Cost(p) +
s∑
i=1

∂Cost(p)

∂pi
∆pi +

1

2

s∑
i=1

s∑
j=1

∂2Cost(p)

∂pi∂pj
∆pi∆pj + ... (8)

Assume ∆p is small enough, we arrive at the approximation

Cost(p + ∆p) ≈ Cost(p) +
s∑
i=1

∂Cost(p)

∂pi
∆pi. (9)

Denoting the gradient vector as ∇Cost(p), where ∇Cost(p)i is the partial derivative of the
cost objective with respect to pi, gives us the more concise form

Cost(p + ∆p) ≈ Cost(p) +∇Cost(p)T∆p. (10)

To minimize the cost objective then, we just need to choose ∆p so that ∇Cost(p)T∆p
is the most negative at each iteration. Notice the following inequality from the dot product

∇Cost(p)T∆p = ||∇Cost(p)||2||∆p||2cos(∇Cost(p),∆p) (11)
≥ −||∇Cost(p)||2||∆p||2. (12)

The most negative descent is achieved if the cosine of the angle between ∇Cost(p) and ∆p
is −1, in other words, if ∆p is in the opposite direction of ∇Cost(p). Considering that the
approximation holds for small ∆p, we define a small step size η and make the update

p→ p− η∇Cost(p) (13)

.
The step size η is more commonly referred to as the learning rate, and equation (13)

formulates the gradient descent algorithm for neural network optimization. We start with
the initial parameters p and iteratively update p until a stopping criterion is satisfied or the
maximum number of iterations is achieved.

Even then, computing the cost over the entire data set could still be computationally
expensive. One alternative approach is to randomly select a training point, and only evaluate
the cost at such point. This is referred to as stochastic gradient descent, the scheme is as
follows:

1. Uniformly choose a random training point i from the set 1,2,...,N

2. Update
p→ p− η∇Costxi(p). (14)

8

One thing to keep in mind, however, is that the above algorithm chooses training point
with replacement. That is, it is equally likely for a training point i to be picked each iteration.
Alternatively, we could randomize the data set and train our model through each training
point to complete an epoch:

1. Shuffle the data set

2. Update
p→ p− η∇Costxi(p). (15)

While stochastic gradient descent is computationally inexpensive, updating the neural
network with random data points can be unstable. One other popular approach is to use
mini-batching, where we split the data set into smaller batches. This has the benefit of
better stability with more data points per run, while relatively efficient compared to training
on the entire data set

1. Split the data set into smaller mini-batches X1, X2, ..., Xm.

2. Update
p→ p− η∇CostXi(p). (16)

2.4 Back Propagation

Now we are ready to move back from our generalized parameter vector p to the weight
martices w[l]

jk and bias vectors b[l]
j . Since we want to minimize the cost function, our job is to

compute the partial derivatives with respect to the weight matrices and bias vectors. These
partial derivatives will tell us at each iteration how much each variable impacts the cost
function. Focusing on a fixed training point, the cost function from (7) can be simplified in
terms of just weights and biases,

Cost =
1

2
||(y − a[L])||22 (17)

We now define δ[l] ∈ Rnl as

δ
[l]
j =

∂Cost

∂z
[l]
j

, for 1 ≤ j ≤ nl and 2 ≤ l ≤ L (18)

We let the expression for δ[l]
j correspond to the error, or sensitivity to the cost function,

in neuron j at layer l. Let us also define the Hadamard product of two vectors. Given two
vectors x, y ∈ Rn, the Hadamard product (x ◦ y)i = xiyi, where x ◦ y ∈ Rn. As such, the
Hadamard product results in the pairwise multiplication of the components of two vectors.
The lemma below lists the properties of the backpropagation algorithm. We use the chain
rule to derive the partial derivatives and to prove each equation of the lemma.

9

Lemma 2.1.

δ[L] = σ′(z[L]) ◦ ∇Cost
a[L]

(19)

δ[l] = σ′(z[l]) ◦ (W [l+1])T δ[l+1] for 2 ≤ l ≤ L− 1 (20)
∂Cost

∂b
[l]
j

= δ
[l]
j for 2 ≤ l ≤ L− 1 (21)

∂Cost

∂w
[l]
jk

= δ
[l]
j a

[l−1]
k for 2 ≤ l ≤ L− 1 (22)

(23)

Proof. We begin by proving (19). We know from (5) that a[L] = σ(z[L]) for l = L, so we can
derive the following:

∂a
[L]
j

∂z
[L]
j

= σ′(z)

Then, taking the partial derivative of the Cost function,

∂Cost

∂a
[L]
j

= −(yj − a[L]
j) = a

[L]
j − yj.

Finally, by chain rule starting with our definition of δ[L]
j ,

σ
[L]
j =

∂Cost

∂z
[L]
j

=
∂Cost

∂a
[L]
j

∂a
[L]
j

∂z
[L]
j

= (a
[L]
j − yj)σ′(z

[L]
j) (24)

.
Next, we show (20). By definition, at layer l + 1,

z[l+1] = W [l+1]a[l] + b[l+1].

For an arbitrary neuron i at layer l + 1, it follows that

z
[l+1]
i =

nl∑
j=1

W
[l+1]
ij a

[l]
j + b

[l+1]
i .

The partial derivative of z[l+1]
i with respect to a neuron j at layer l is then

∂z
[l+1]
i

∂a
[l]
j

= W
[l+1]
ij .

Notice that ∂a
[l]
j

∂z
[l]
j

= σ′(z
[l]
j), using the chain rule gives us

∂∂z
[l+1]
i

∂z
[l]
j

=
∂z

[l+1]
i

∂a
[l]
j

∂a
[l]
j

∂z
[l]
j

= W
[l+1]
ij σ′(z

[l]
j).

10

We are then able to compute the partial derivative of the Cost with respect to neuron j
at layer l by propagating through its contribution to each of the neurons at layer l + 1:

∂Cost

∂z
[l]
j

=

nl+1∑
i=1

∂Cost

∂z
[l+1]
i

∂∂z
[l+1]
i

∂z
[l]
j

=

nl+1∑
i=1

δ
[l+1]
i W

[l+1]
ij σ′(z

[l]
j),

which is the component-wise form of equation (20).
Now, to prove (21) we start with out definition of z[l]

j from (3) at a component j,

z
[l]
j = W [l]a

[l−1]
j + b

[l]
j

Taking the partial derivative with respect to the bias vector we get,

∂z
[l]
j

∂b
[l]
j

= 1

Then, by the chain rule and our definition of δ[l]
j ,

∂Cost

∂b
[l]
j

=
∂Cost

∂z
[l]
j

∂z
[l]
j

∂b
[l]
j

=
∂Cost

∂z
[l]
j

(1) = δ
[l]
j (25)

Lastly, to show (22) we begin with the component wise version of z[l]
j ,

z
[l]
j =

nl−1∑
k=1

w
[l]
jka

[l−1]
k + b

[l]
j

Taking the partial derivative,
∂z

[l]
j

∂w
[l]
jk

= a
[l−1]
k

Then, by chain rule and definition of δ[l]
j ,

∂Cost

∂w
[l]
jk

=
∂Cost

∂z
[l]
j

∂z
[l]
j

∂∂w
[l]
jk

=
∂Cost

∂∂w
[l]
jk

(a
[l−1]
k) = δ

[l]
j a

[l−1]
k (26)

2.5 Neural Network Implementation in Julia

The full Julia implementation can be found in Appendix A1. We include the entire con-
struction of a generic neural network from scratch without any external libraries, taking
advantage of Julia’s mathematical and scientific computing capabilities. The code to pro-
duce the classifier example used in this section is in Appendix A2, where we implement a
neural network of one hidden layer and train the model to approximate the classification
function.

11

3 Neural Ordinary Differential Equations

3.1 Residual Neural Networks

The inspiration for using differential equations within a neural network framework stems
from the recent successes of residual neural networks (ResNet), especially within image
recognition [7]. While an increase in layers would usually yield an increase in performance,
large neural networks could suffer from diminishing gradient: the gradient of the Cost with
respect to earlier layers becomes too minuscule to actually update the parameters. Residual
networks, however, are able to resolve this issue by allowing shortcuts over some layers.
This architecture is structured in such a way that each layer can be defined as a finite
transformation:

ht+1 = ht + g(ht, θt) (27)

where ht is the hidden state at layer t, g is a dimension preserving function, and θ is a vector of
parameters. Such formulation, however, can also be interpreted as an Euler discretization of
a continuous ordinary differential equation [9]. The intuition to treat a continuous differential
equation as a series of infinitely small residual steps. Starting with (27) and some constant
∆t ∈ R,

ht+1 = ht + g(ht, θt)

= ht +
∆t

∆t
g(ht, θt)

= ht + ∆tf(ht, θt)

Here, f can be re-interpreted as a step of the Euler’s discretization method to approximate
a continuous function:

(ht+1 − ht)
∆t

= f(ht, θt). (28)

This inspires us to push the time step ∆t to be infinitesimal, and so arrive at a formulation
of continuous hidden state dynamics, where each layer h is a discretized evaluation of a
continuous function z at time t:

dz(t)

dt
= f(z(t), θ(t), t). (29)

Figure 6 illustrates this extension by comparing a residual neural network to a continuous
one. In this interpretation, the neural network has become an initial value ODE problem,
whose solution is the function mapping the input to the output over some time range. In
the next section, we further explore this idea of continuous formulation, and introduce the
ingredients of a neural ODE.

While still in the early stage of research, Neural ODEs appear to be an exciting alternative
worth exploring, with some apparent advantages over standard ResNets. The original paper
Neural Ordinary Differential Equations [3] received the Best Paper Award at the 2018 Neural
Information Processing Systems (NeurIPS) conference. The authors, affiliated with the

12

Vector Institute at the University of Toronto, tout the parametric and memory efficiency of
the model. Furthermore, they are able to draw upon over 100 years of differential equations
knowledge and utilize the adaptive computation of modern ODE solver. This means that
we can trade longer computation time for better accuracy as necessary. We shall investigate
the benefits and potential pitfalls of the neural ODE framework in later sections.

Figure 6: A residual network defines a series of discrete steps while an ODE network defines
a continuous vector field [3].

3.2 The General Set-Up

A more or less intuitive way to understand how neural ODEs naturally extend the traditional
residual network set-up, is that neural ODEs have infinitely many layers at different point
in time. As such, we are interested in optimizing the trajectory, or the direction of change,
of how the input maps to the output in the time span of the model. Instead of different
weights and biases at each layer, we use a set of parameters to compute the derivative of the
ultimate function we want to approximate. In other words, given the task of modeling the
mapping of x to y in the space Rn, we are interested in optimizing the derivative such that
the solution to the the initial value problem

dz

dt
= f(z, θ, t) (30)

z(t0) = x (31)

will accurately predict y at time t1.
The set-up of a neural ODE therefore require three basic ingredients: a derivative model

f to compute the dynamics at a given time t, a set of parameter θ to calculate such a
model, and a time span [t0, t1] to evaluate the network. The continuous analog to matrix
multiplication and linear algebra in evaluating traditional neural networks is then to integrate
the derivative model over its time span:

z(t1) = z(t0) +

∫ t1

t0

f(z, θ, t)dt. (32)

13

.
This can be done fairly efficiently using modern ODE solvers, with the benefit that many

such solvers are already available across different systems and extremely well tested. Given
an input, we simply make a call to the ODE solver to evaluate the integral, plugging in the
necessary initial value, derivative function, parameters and the time span:

z(t1) = ODESolve(z(t0), f, θ(t), t0, t1). (33)

Also similar to the standard neural network approach, the ultimate objective is for z(t1)
to get as close to the desired labeled output y as possible. Thus, we also need a cost function
to assess the performance of neural ODEs at each iteration. We define an arbitrary Cost
function that takes in the integral output at time t1:

Cost(z(t1)) = Cost
(
z(t0) +

∫ t1

t0

f(z(t), θ(t), t)dt

)
(34)

= Cost(ODESolve(z(t0), f, θ(t), t0, t1)). (35)

It is not immediately obvious, however, how we would be able to optimize our neural
ODE model. With traditional neural network, we compute the gradients with respect to the
weights and biases at each layer and adjust them accordingly to achieve better results with
gradient descent. To implement the same method for neural ODEs, we would then need to
calculate the gradients with respect to their ingredients, namely the parameters θ as well
as the start and stop time t0, t1. Furthermore, in order for neural ODE to work as a layer
in a larger network, we would also want to compute the gradient with respect to the input
z(t0). While such a task might be straight-forward in traditional networks, evaluating the
gradients for neural ODEs would require us to differentiate under the integral sign without
knowing the explicit formula of z in terms of θ and t.

Consequently, we introduce the Adjoint method [10, 3] in the next section, which can
act as the reverse-mode differentiation of an ODE solution. Back propagation then will be
fairly identical to our set-up of traditional neural networks, and different schemes of gradient
descent will also be applicable.

3.3 Adjoint Method

Similar to a standard neural network, we wish to optimize the parameters of the neural
ODE in order to minimize the Cost function. The main obstacle, however, is that back-
propagating through an ODE solver is difficult and vastly inefficient. Moreover, it is also not
obvious how we might compute the gradient of the Cost function with respect to θ without
knowing an explicit solution of the state z in terms of θ and t. This is the motivation for
the adjoint method to calculate the gradient without knowing the explicit solution.

Before we take a closer look at the adjoint method, a significant assumption we’re un-
dertaking in this section is that f(z, θ, t) together with its partial derivatives with respect to
z, θ and t are continuous within the ranges of the variables. This is a fair assumption, since
in practice we’re modeling f(z, θ, t) using linear algebra computations. In addition, we also
assume that θ does not change according to time. While setting θ to be a function of time
might improve training, it is outside the scope of the adjoint method and other sensitivity

14

analysis techniques are preferred. As such, the adjoint method is only a computationally
cheap and fast way to back propagate through specific classes of neural ODEs.

Note that dzt
dt

= f(zt, θ, t), we first introduce a Lagrangian L function as follows

L = Cost(ztN)−
∫ tN

t0

λ

(
dz

dt
− f(z, θ, t)

)
dt, (36)

where t0 and tN compose the time span of our neural ODE, and λ is called the Lagrange
multiplier, an arbitrary row vector chosen at time t.

The insight here is that the second term to the right is 0 by construction, and thus
L would be the same as the Cost function. A clever choice of λ, however, will allow us to
calculate dL

dθ
without solving for the explicit derivative of z with respect to θ. For convenience,

the gradients of the Cost are assumed to be row vectors.
We first simplify L by integrating by parts:∫ tN

t0

λ
dz

dt
= λz

∣∣∣∣tN
t0

−
∫ tN

t0

λ̇z = λ(tN)ztN − λ(t0)zt0 −
∫ tN

t0

λ̇zdt. (37)

Substituting equation (37) into (36) results in

L = Cost(ztN)− λ(tN)ztN + λ(t0)zt0 +

∫ tN

t0

λ̇zdt+

∫ tN

t0

λf(z, θ, t)dt. (38)

Recall that λ is an arbitrary chosen at time t and so does not depend on θ. Additionally,
zt0 does not depend on θ either. We then derive L with respect to θ. Since f and its partial
derivatives are continuous, we apply Leibniz’s differentiation rule under the integral sign [11,
Chapter 8]:

dL
dθ

=
dCost
dztN

dztN
dθ
− λ(tN)

dztN
dθ

+

∫ tN

t0

λ̇
dz

dθ
dt+

∫ tN

t0

λ

(
∂f

∂z

dz

dθ
+
∂f

∂θ

)
dt (39)

=

(
dCost
dztN

− λ(tN)

)
dztN
dθ

+

∫ tN

t0

(
λ̇+ λ

∂f

∂z

)
dz

dθ
dt+

∫ tN

t0

λ
∂f

∂θ
dt. (40)

Equation (40) motivates us to eliminate the first two terms. Indeed, we come up with a
scheme to choose λ as follows:

λ(tN) =
dCost
dztN

(41)

λ̇ = −λ∂f
∂z
. (42)

Lemma 3.1. Let us define the adjoint state a(t) as the solution to the initial value problem

a(tN) =
dCost
dztN

,
da

dt
= −a(t)

∂f

∂z
, (43)

15

then a(t) = dCost
dzt

, and the gradients of the Cost with respect to zt0, θ, t0 could all be
computed by evaluating the initial value problems at time t0:

dCost
dθ

∣∣∣∣
tN

= aθ(t0), aθ(tN) = 0,
daθ
dt

= −a(t)
∂f

∂θ
(44)

dCost
dt0

∣∣∣∣
tN

= −at(t0), at(tN) = −a(tN)f(ztN , p, tN),
dat
dt

= −a(t)
∂f

∂t
. (45)

Proof. Recall that L = Cost, the chosen adjoint state now makes equation (40) much cleaner:

dCost
dθ

∣∣∣∣
tN

=
dL
dθ

=

∫ tN

t0

λ
∂f

∂θ
dt =

∫ tN

t0

a(t)
∂f

∂θ
dt =

∫ t0

tN

−a(t)
∂f

∂θ
dt = aθ(t0)− aθ(tN), (46)

where aθ is a function of t such that daθ
dt

= −a(t)∂f
∂θ
.

To simplify the computation, we assume that aθ(tN) = 0. Indeed, even if aθ(tN) 6= 0, we
simply choose a′θ(t) = aθ(t)− aθ(tN):

dCost
dθ

∣∣∣∣
tN

=

∫ t0

tN

−a(t)
∂f

∂θ
= a′θ(t0)− a′θ(tN) = a′θ(t0). (47)

This is the solution at time t0 of the ODE (44). Compared to the original proof of
the Neural ODE paper [3], equation (46) makes it clear that the gradient with respect to
θ evaluated at time tN is not aθ(t0), but aθ(t0) − aθ(tN). The adjoint aθ is only used to
efficiently compute the gradient with respect to θ without having to know dz

dθ
. It does not

represent the gradient with respect to θ evaluated at some time t. We therefore are free to
assume aθ(tN) = 0.

The same approach could be used to find the gradient with respect to the state z at any
given point in time. Note that we use t′ as a stand-in variable for t to disambiguate the lower
bound t of the integral from the derivative variable. We define the Lagrangian at time t as:

L(t) = Cost(ztN)−
∫ tN

t

a(t′)

(
dz

dt′
− f(z, θ, t′)

)
dt′ (48)

= Cost(ztN)−
∫ tN

t

a(t′)
dz

dt′
dt′ +

∫ tN

t

a(t′)f(z, θ, t′)dt′ (49)

= Cost(ztN)− a(tN)ztN + a(t)z(t) +

∫ tN

t

da

dt′
zdt′ +

∫ tN

t

a(t′)f(z, θ, t′)dt′. (50)

Once again, we utilize Leibniz’s differentiation rule under the integral sign [11, Chapter 8]:

dCost
dzt

∣∣∣∣
tN

=
dL
dzt

(51)

=
dCost
dztN

dztN
dzt
− a(tN)

dztN
dzt

+ a(t) +

∫ tN

t

da

dt′
dz

dzt
dt′ +

∫ tN

t

a(t′)
∂f

∂z

dz

dzt
dt′ (52)

=

(
dCost
dztN

− a(tN)

)
dztN
dzt

+ a(t) +

∫ tN

t

(
da

dt′
+ a(t′)

∂f

∂z

)
dz

dzt
dt′ (53)

= a(t), (54)

16

completing our proof that the adjoint state at time t is indeed the gradient of the Cost
function with respect to the hidden state at t. The gradient of the Cost with respect to z at
time t0 is therefore simple a(t0).

Finally, we calculate the gradient of the Cost with respect to a given time t via the chain
rule:

dCost
dt

∣∣∣∣
tN

=
dCost
dzt

∣∣∣∣
tN

dzt
dt

= a(t)f(z, θ, t). (55)

While equation (55) can be used to calculate the the gradient with respect to a given
time t, we will formulate it into an initial value problem. This allows us to make a single
call to the ODE solver and calculate all necessary gradients at once. Deriving equation (55)
gives:

d

dt

(
dCost
dt

∣∣∣∣
tN

)
=
da(t)

dt
f(z, θ, t) + a(t)

(
∂f

∂z

dz

dt
+
∂f

∂t

)
(56)

= −a(t)
∂f

∂z
f(z, θ, t) + a(t)

∂f

∂z

dz

dt
+ a(t)

∂f

∂t
(57)

= a(t)
∂f

∂t
. (58)

The gradient with respect to time t0 can then be calculated with the formula

dCost
dt0

∣∣∣∣
tN

=
dCost
dtN

∣∣∣∣
tN

+

∫ t0

tN

a(t)
∂f

∂t
dt. (59)

Let at(t) = −dCost
dt
|tN , then we confirm that the gradient with respect to time t0 can

be calculated by solving (45). The reason why we set at to be the negative inverse of the
gradient is that we would then be able to compute −a(t)∂f

∂z
, −a(t)∂f

∂θ
, and −a(t)∂f

∂t
efficiently

by computing the dot product of −a(t) with the Jacobian matrix computed from f(z, θ, t).

Thus, the full algorithm for the adjoint method is to solve the initial value problems
detailed in lemma 3.1 backward in time from t1 to t0. For efficiency, we concatenate all three
adjoints for z, θ, and t into a single augmented adjoint s. The dynamics of a, aθ, at, and
hence s is computed as the dot product of −a(t) and the Jacobian matrix of f(z, θ, t) with
respect to z, θ, t. With only one call to the ODE solver on the augmented adjoint s, we are
then able to calculate all necessary gradients with respect to z(t0), θ, t0, and t1.

3.4 Strengths and Limitations

While neural ODEs appear to be a natural extension of existing residual networks, and open
up a new area of research integrated with the differential equations field, we point out that
there are certain drawbacks as well as benefits to this approach.

An important implication of using readily available ODE solver suites is that neural ODE
can take advantage of unprecedented tools for deep learning. Many modern ODE solvers, for
example, offer options to choose relative and absolute tolerances, consequently neural ODEs

17

can potentially trade slower computing time for better accuracy [3]. Additionally, neural
ODEs is able to adapt to computation needs as dynamics becomes increasingly complex
without altering the model. Traditional deep learning approach usually adds more layers to
improve training, but in the case of utilizing neural ODEs, the solver can simply increase
the number of time steps. Many algorithms have already been developed and refined in the
field of numerical computing for this purpose, allowing neural ODEs to smoothly integrate
vast areas of knowledge of solving differential equations out of the box.

Many other mathematical benefits and technical merits have been discussed at lengths in
the original paper [3]. However, much more recent research into neural ODEs has discovered
substantial trade-offs. The continuous nature of neural ODEs, while desirable and suitable
for continuous dynamics, implies that the topology of the input space is preserved [4]. In
other words, the output has the same dimension and lives in the same space with the input.
This makes neural ODEs especially susceptible to ill-formed problems where traditional
neural networks succeed. To illustrate this point, we present a simple problem where neural
ODEs fail to approximate the sine function.

Figure 7: Approximating sine function. Neural network model is able to fit the sine function
within the specified space relatively well, while a neural ODE model with similar set-up is
stuck. The augmented neural ODE model is able to fit the sine wave within the specified
region much better than a naive neural ODE network.

Figure 7 demonstrates a curve fitting problem, where both the neural ODE and the
neural network models use only one hidden layer with eight nodes. We introduce some noise
into the data, and compute the loss via sum of squared error from expected outputs. Both
models run on the same data set for 100 epochs, but the neural ODE gets stuck early on,
while the neural network is able to capture the sine wave within the region. The reason for
the poor performance of the neural ODE is because sine is a function mapping from R to the
interval [−1, 1] where no vector field can replicate. Figure 8, for instance, shows that some
trajectories must intersect each other with the start and stop time at 0 and 10, respectively.

This is particularly troubling for the naive neural ODE network with only one differential

18

0 10
−2

0

2

4

t

z

Figure 8: Continuous trajectories from π
6
to sin π

6
and from 7π

6
to sin 7π

6
must intersect and

are not possible for neural ODE.

equation, since it is Lipschitz continuous [3]. According to Picard’s existence and uniqueness
theorem then, each point corresponds to an initial value problem and produces a unique
solution [1]. All trajectories from the input to the output must therefore not cross each
other. As we have shown, the sine function violates this assumption and so the neural
ODE quickly fails. This limitation, however, could be avoided with the introduction of the
augmented neural ODE.

3.5 Augmented Neural ODE

While there are classes of problems where a naive neural ODE will not perform favorably,
we could extend the solution space of the network to sidestep this issue and improve training
in general. The idea is that by adding extra dimensions, we are able to avoid clashing
trajectories and ill-formed vector fields, thus accelerate training overall. In practice, we
concatenate a few zero features to the input before pushing it to the ODE solver, and drop
the additional dimensions from the output. This approach is aptly named Augmented Neural
ODEs, and empirical experiments have shown that the model achieves better successes with
less complex computations [4].

For instance, we update our last attempt at approximating the sine function by adding
three extra dimensions to the input. Granted, there are many more parameters to tune
and so better performance is to be expected. However, we note that the same number of
parameters under the naive neural ODE network does not perform any better. Figure 7
demonstrates how training is enhanced after augmentation.

3.6 Mathematical Modeling

Since the essence of neural ODE is to learn continuous dynamics through time, it follows
that a particularly fitting use case is to use neural ODE as an optimizable dynamical model

19

instead of a drop-in replacement for neural network. While deep learning has proven itself
to be incredibly effective, it requires an an abundant amount of data for more complex
tasks. Furthermore, the resulting model is not interpretable: testing confirms the accuracy
of neural networks, but there is no immediate understanding of what weights and biases
physically represent. A classification system might correctly identify an animal species from
a photo, but we do not know what features have motivated this decision. On the other
hand, mathematical models are highly interpretable, translating observations in reality into
equations that can be easily understood. However, more often than not the formulation
of such models has limited predictive power due to unrealistic simplifying assumptions. In
this section, we explore how neural ODE could be used to model mathematical systems,
and potentially combine mathematical modeling with deep learning to remain interpretable
without sacrificing accuracy, with an example of the Lotka-Volterra predator-prey model.

The Lotka–Volterra model is a pair of first-order nonlinear differential equations that
describe the population dynamics of a predator-prey biological system:

dx

dt
= αx− βxy (60)

dy

dt
= −δy − γxy, (61)

where x is the number of preys and y is the number of predators.

(a) Before Training (b) After Training

Figure 9: Lotka-Volterra Parameter Fitting with Neural ODE.

In the equations above, each derivative gives the instantaneous growth rate of the corre-
sponding population. For instance, the population of the prey increases with the reproduc-
tion rate α, but decreases with more encounters between the preys and the predators. On
the other hand, the predator population increases with more prey to hunt on, but decreases
with more competition among its kind.

This example is of interest for two reasons. First, the solutions are periodic, but cannot be
represented with simple trigonometric functions. Second, the model can be inserted directly
into a neural ODE, and therefore is able to leverage gradient descent to find the appropriate
parameters for a desired outcome. Figure 9 shows the result after training adapted from an
example of Julia’s DiffEqFlux library [13]. The objective is simply to have both populations

20

as close to 1 as possible, and the neural ODE is able to quickly detect the parameters
satisfying this condition.

Figure 10: Neural ODE as an optimizable dynamical system. By approximating the deriva-
tive of the sine function on the data set, we are able to not only fit training data accurately
but also extrapolate the correct dynamics for sine.

In fact, this approach could be used to approximate the sine function from the previous
sections. We approximate the derivative at each point in the data set numerically, and build
a dynamical model as follows: [

y
dy

]
=

[
α β
γ δ

] [
y
dy

]
, (62)

where α, β, γ, δ are all initiated to be 0. Since the derivative of the sine function is cosine,
the correct parameters should be [

0 1
−1 0

]
,

which we successfully optimize in training. After 200 epochs, the neural ODE finds the
optimal parameters to be α = 0.03345, β = 1.003, γ = −0.9876, δ = −0.03052. Unsurpris-
ingly, the model fits the sine curve perfectly, and is able to extrapolate over the entire R set
accurately. The full code can be found in Appendix B2.

We would like to note that this showcases how mathematical models can be smoothly
integrated with neural ODE networks. On a broader scale, we will be able to impute prior
mathematical knowledge into a deep learning model through neural ODE by providing the
terms of the equations we already know, and use a neural network to approximate the
remaining portions. Recent research into this direction have already achieved substantial
results: using a combination of mathematical modeling and neural ODE allows for effective
learning on tiny amount of data, and has the potential to automate discovery of explicit
dynamics equations[12].

21

3.7 Neural ODE Implementation in Julia

An implementation of neural ODE networks and required libraries can be found in Appendix
B1. The code for approximating the sine function is in Appendix B2, and the Lotka-Volterra
system is modelled is in B3.

4 Conclusion
In this paper we lay the foundational framework for traditional neural networks and neural
ODEs from a rigorous mathematical perspective. In addition, we demonstrate the motiva-
tion behind extending residual neural networks into neural ODEs, and analyze advantages as
well as trade-offs of this new approach. We also show how augmentation might help enhance
neural ODEs training, and explore how neural ODEs can be utilized for mathematical mod-
eling. One potential direction for future research is then to further integrate neural ODEs
with scientific and mathematical knowledge to automate interpretable formulation of hidden
dynamics.

References
[1] R. P. Agarwal and V. Lakshmikantham. Uniqueness and nonuniqueness criteria for

ordinary differential equations. World Scientific Publishing, 1993.

[2] Jeff Bezanson et al. “Julia: A fresh approach to numerical computing”. In: SIAM Review
59.1 (2017), pp. 65–98. doi: 10.1137/141000671.

[3] Tian Qi Chen et al. “Neural ordinary differential equations”. In: Advances in neural
information processing systems. 2018, pp. 6571–6583.

[4] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented Neural ODEs. 2019.
arXiv: 1904.01681 [stat.ML].

[5] FluxML. Flux.jl. Version 0.10.4. url: https://github.com/FluxML/Flux.jl.

[6] FluxML. Zygote.jl. Version 0.4. url: https://github.com/FluxML/Zygote.
jl.

[7] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[8] Catherine F Higham and Desmond J Higham. “Deep learning: An introduction for
applied mathematicians”. In: SIAM Review 61.4 (2019), pp. 860–891.

[9] Yiping Lu et al. “Beyond finite layer neural networks: Bridging deep architectures and
numerical differential equations”. In: arXiv preprint arXiv:1710.10121 (2017).

[10] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge,
2018.

[11] Murray H. Protter and Charles B. Jr. Morrey. Intermediate Calculus. Springer Science
Business Media, 2012.

22

https://doi.org/10.1137/141000671
https://arxiv.org/abs/1904.01681
https://github.com/FluxML/Flux.jl
https://github.com/FluxML/Zygote.jl
https://github.com/FluxML/Zygote.jl

[12] Christopher Rackauckas et al. Universal Differential Equations for Scientific Machine
Learning. 2020. arXiv: 2001.04385 [cs.LG].

[13] Chris Rackauckas et al. “Diffeqflux. jl-A julia library for neural differential equations”.
In: arXiv preprint arXiv:1902.02376 (2019).

[14] Oxford Reference. Taylor’s Theorem. url: https://www.oxfordreference.
com/view/10.1093/oi/authority.20110803102744753.

[15] SciML. DifferentialEquations.jl. Version 6.9. url: https://github.com/SciML/
DifferentialEquations.jl.

Appendix: Julia Implementations

Appendix A1: Neural Network Implementation

We implement a neural network framework completely from scratch in Julia, using only
native functions of the language without external libraries. This implementation supports
arbitrary number of layers, is able to work with any activation and cost function as long as
the derivative function is also defined, and can handle mini-batching. An example use case
to generate the graphs for Section 1 in this paper can be found in Appendix A2.

==
Layer Struct
==

A Layer consists of weights, bias, and an activation function to produce the
output given the input. Additionally, we also save the result before applying
the activation function to compute the backward pass.
struct Layer{WS, BS, Z, F}

W::WS # weights
b::BS # biases
z::Z # intermediate state
σ::F # activation function

end

The Layer constructor takes in the dimensions of the input, output, and an
activation function. Weight and biases are set accordingly, and an empty array
is set up to store the intermediate state.
Layer(in::Int, out::Int, σ::Function) =

Layer(rand(Float32, out, in) .- 0.5f0, # weights
zeros(Float32, out), # biases
Array{Float32}[], # intermediate state vector
σ) # activation function

Layer output is computed using the formula σ(W * X + b)
function (l::Layer)(X)

W, b, z, σ = l.W, l.b, l.z, l.σ
temp = W * X .+ b # .+ broadcasting is also compatible with batches
empty!(z)
push!(z, temp) # store intermediate state for back propagation
return σ.(temp) # apply the activation function element-wise

end

Layer is updated with partial derivatives and learning rate.
function update!(l::Layer, dW, db, η)

l.W .-= η * dW
l.b .-= η * db

end

23

https://arxiv.org/abs/2001.04385
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803102744753
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803102744753
https://github.com/SciML/DifferentialEquations.jl
https://github.com/SciML/DifferentialEquations.jl

Given the derivative of the Cost wrt the ouput, we calculate the partial
derivatives with respect to weights, biases, and the input.
function derive(l::Layer, ∂Cost∂a_out, a_in)

dσ = derive(l.σ) # user-defined derivative function of σ

Cost wrt intermediate result
∂Cost∂z = ∂Cost∂a_out .* dσ.(l.z[1])

∂W computes Cost wrt weights for one pair of input and output
∂W(∂Cost∂z, a_in) = ∂Cost∂z * a_in'
Cost wrt weights for entire batch
∂Cost∂W = sum(∂W.(eachcol(∂Cost∂z), eachcol(a_in)))

Cost wrt to bias
∂Cost∂b = sum(eachcol(∂Cost∂z))

Cost wrt input from last layer
∂Cost∂a_in = l.W' * ∂Cost∂z

return ∂Cost∂W, ∂Cost∂b, ∂Cost∂a_in
end

Back propagation given the input from the previous layer
and the cost gradient wrt this layer's output
function back_propagate!(l::Layer, ∂Cost∂a_out, a_in, η)

∂Cost∂W, ∂Cost∂b, ∂Cost∂a_in = derive(l, ∂Cost∂a_out, a_in) # gradients
update!(l, ∂Cost∂W, ∂Cost∂b, η) # update parameters
return ∂Cost∂a_in # Cost wrt input from last layer

end

==
Model Struct
==

A Model consists of multiple Layers. Additionally, we store each Layer's
outputs in an array for the backward pass.
struct Model{LS, OS}

layers::LS # Layers
a::OS # Layer outputs

Model Constructor
Model(layers...) = new{typeof(layers), Vector{Array{Float32}}}(layers, [])

end

Evaluate Model by evaluating the layers sequentially.
function (m::Model)(X)

Store Model input
empty!(m.a)
push!(m.a, X)

Evaluate each layer and store their outputs
for layer in m.layers

push!(m.a, layer(m.a[end]))
end

Return Model output
return pop!(m.a)

end

Back-propagate through the Model by back-propagating through each layer.
function back_propagate!(m::Model, ∂Cost∂aL, η)

Back propagate through each layer
∂Cost∂a_out = ∂Cost∂aL
for layer in reverse(m.layers)

a_in = pop!(m.a) # retrieve layer input
∂Cost∂a_out = back_propagate!(layer, ∂Cost∂a_out, a_in, η)

end

24

end

Training requires a Model, a Cost function, the training dataset, and the
learning rate.
function train!(m::Model, Cost, dataset, η)

costs = Float32[] # store cost of each batch in dataset
dCost = derive(Cost) # user-defined derivative function of Cost

Train Model on each batch in dataset
for batch in dataset

X, Y = batch
out = m(X)

Calculate cost
cost = Cost(out, Y)
push!(costs, cost)

Back propagation
∂Cost∂out = dCost(out, Y)
back_propagate!(m, ∂Cost∂out, η)

end

Return average cost of all batches
return sum(costs) / length(dataset)

end

Appendix A2: Neural Network Example

We use a simple classification example to demonstrate how neural networks are able to
approximate and extrapolate hidden mappings by training on labeled data. The neural
network only requires one hidden layer of 10 nodes to accurately approximate the underlying
classification model.

==
Load Packages
==

using Plots, LinearAlgebra
import Random
include("./NeuralNetwork.jl")

==
Generate Training Data
==

True model to classify data
model(x) = xˆ3 - 3x + 2

Generate a data set given the classification model, the range of coordinates,
and the size of the data set.
function generate_dataset(model, xrange, yrange, size)

Random sampling function
sample(range, size) = rand(size) * (range[end] - range[1]) .+ range[1]

Sample x and y coordinates
xs = sample(xrange, size)
ys = sample(yrange, size)

Input matrix
input = hcat(x1s, x2s)'

25

Points above and below the model are labeled 1 and 0, respectively
output = Float32.(x2s .≥ model.(x1s))'

return input, output
end

Coordinate range of data set
x1grid = -3:0.1:3
x2grid = -16:0.1:20

Generate the inputs and corresponding outputs
input, output = generate_dataset(model, x1grid, x2grid, 500)

Plot the data set
ishigher = vec(output .== 1)
function plot_data()

scatter(input[1, ishigher], input[2, ishigher], label="", color=:blue)
scatter!(input[1, .!ishigher], input[2, .!ishigher], label="", color=:red)
plot!(x1grid, model.(x1grid), label="True Model", legend=:outertopright)

end
plot_data()

==
Training Environment
==

Activation functions
====================
Sigmoid activation function and its derivative
sigmoid(x) = 1 / (1 + exp(-x))
derive(::typeof(sigmoid)) = x -> sigmoid(x) * (1 - sigmoid(x))

Relu activation function and its derivative
relu(x) = max(0, x)
derive(::typeof(relu)) = x -> (x ≥ 0 ? 1 : 0)

Neural network model
====================
neural_model = Model(

Layer(2, 10, relu),
Layer(10, 1, sigmoid))

Cost objective
==============
Binary cross entropy loss and its derivative
bcentropy(ŷ, y) = -y* log(ŷ + 1e-7) - (1 - y) * log(1 - ŷ + 1e-7)
derive(::typeof(bcentropy)) = (ŷ, y) -> -y/(ŷ + 2e-7) + (1 - y)/(1 - ŷ + 1e-7)

Cost function and its derivative

Cost(Ŷ, Y) = sum(bcentropy.(Ŷ, Y)) / size(Y, 2)

derive(::typeof(Cost)) = (Ŷ, Y) -> derive(bcentropy).(Ŷ, Y) / size(Y, 2)

Minibatching
============
function minibatch(input, output, batch_size)

inputs = Array[]
outputs = Array[]

Shuffle data set and split into batches
rand_idxs = Random.randperm(size(input, 2))
batch_idxs = Iterators.partition(rand_idxs, batch_size)
for batch_idx in batch_idxs

push!(inputs, input[:, batch_idx])
push!(outputs, output[:, batch_idx])

end

Return data set

26

zip(inputs, outputs) |> collect
end

Model visualization
===================
function plot_model(neural_model, x1grid, x2grid)

plot_data() # plot true model

Find the classification boundary
bound = fill(maximum(x2grid), size(x1grid))
for (i, x1) in enumerate(x1grid)

for x2 in x2grid
out = neural_model([x1, x2])[end]
if out ≥ 0.5

bound[i] = x2
break

end
end

end

Plot neural network model
plot!(x1grid, bound, label="Neural Network Model")

end

==
Training
==

η = 0.05 # learning rate
epochs = 1000 # training epochs
anim = Animation() # visualization of training process

Training loop
=============
for i in 1:epochs

Prepare batches
dataset = minibatch(input, output, 5)

Train model
cost = train!(neural_model, Cost, dataset, η)

Report loss
println("Epoch $i average cost: $cost")

Update visualization
if i % 10 == 0

plot_model(neural_model, x1grid, x2grid)
frame(anim)

end
end

Trained model visualization
===========================
gif(anim)
plot_model(neural_model, x1grid, x2grid)

Appendix B1: Neural ODE Implementation

We implement a neural ODE framework with Flux, a machine learning package, Zygote, a
source to source automatic differentiation package, and DifferentialEquations, an ODE solver
in Julia.

27

using DifferentialEquations, Flux, Zygote

Extend Zygote to work with Neural ODE
function Zygote._zero(xs::AbstractArray{<:AbstractArray}, T=Any)

return [Zygote._zero(x) for x in xs]
end

==
Neural ODE Layer Struct and Constructor
==

A Neural ODE consists of a function f(z, θ, t) that models z's derivative, and
the parameters `θ` to be optimized, and the time span of the integral.
Additionally, we also store the ODE solver's solution, since it is useful for
the backward pass via the adjoint method.
struct NeuralODE{F, P, T, S}

f::F # derivative model
θ::P # vector of parameters
tspan::T # time span [t0, t1]
sol::S # vector of ODE solution

end

We store the ODE solver's solution in a vector instead of directly to make the
`NeuralODE` struct immutable for better performace. At initialization, this is
simply an empty vector.
function NeuralODE(f, θ, tspan)

return NeuralODE(f, θ, tspan, DiffEqBase.AbstractODESolution[])
end

==
Flux compatibility
==

Using the macro `Flux.@functor` allows the machine learning library Flux to
mix our `NeuralODE` layer in any model.
Flux.@functor NeuralODE

We also specify the parameters `θ` to be optimized with `Flux.trainable`. We
only update `θ` by default, but we can also optimize the time span.
Flux.trainable(node::NeuralODE) = (node.θ,)

==
Forward pass
==

The forward pass computes the integration with the ODE solver. The forward
pass returns an array of the solution at each timestep.
function (node::NeuralODE)(z_t0; alg=Tsit5(), kwargs...)

f, θ, t0, t1, sol = node.f, node.θ, node.tspan[1], node.tspan[2], node.sol
return forward!(z_t0, θ, t0, t1; f=f, sol=sol, alg=alg, kwargs...)

end

Integrate from `t0` to `t1` to calculate `z` at `t1`, also returns `z` at
each timestep in a vector.
function forward!(z_t0, θ, t0, t1; f, sol, alg, kwargs...)

Define and solve ODE problem
function dzdt(dz, z, θ, t)

dz .= f(z, θ, t)
end
problem = ODEProblem(dzdt, z_t0, (t0, t1), θ)
solution = solve(problem, alg; kwargs...)

Store the solution for the backward pass
empty!(sol)
push!(sol, solution)

Return an array of `z` evaluated at each timestep
return solution.u

28

end

==
Backward pass
==

Since back-propagating through the ODE solver is complex, we define a custom
backward pass for the Neural ODE via the adjoint method. Flux relies on the
Zygote library to calculate gradients, and we can define our custom gradient
via `Zygote.@adjoint`.
Zygote.@adjoint function forward!(z_t0, θ, t0, t1; f, sol, alg, kwargs...)

Forward pass
zs = forward!(z_t0, θ, t0, t1; f=f, sol=sol, alg=alg, kwargs...)

Return the forward pass and how to calculate the gradients of the loss wrt
`z_t0` and `θ` from the gradient of the loss wrt `z` at each timestep.
return zs, ∂L∂zs -> backward(∂L∂zs, θ; f=f, sol=sol[1], alg=alg)

end

Compute the gradients of the loss wrt to `θ`.
function backward(∂L∂zs, θ; f, sol, alg)

Calculate the partial derivatives from each relevant `∂L∂z`
idxs = .!(iszero.(∂L∂zs)) |> collect
t0 = sol.t[1]
t1s = sol.t[idxs]
∂s = _backward.(∂L∂zs[idxs], Ref(θ), t0, t1s; f=f, sol=sol, alg=alg)

Aggregate all partial derivatives
∂L∂t1 = ∂s[end][end]
∇ = map(+, [∂[1:3] for ∂ in ∂s]...)
return (∇..., ∂L∂t1)

end

Given the gradient of the loss wrt `z` at time `t1`, compute the partial
derivatives wrt `z_t0` and `θ` via the adjoint method.
function _backward(∂L∂z_t1, θ, t0, t1; f, sol, alg)

Derivative of the loss wrt `t1`
∂L∂t1 = ∂L∂z_t1[:]' * f(sol[end], θ, t1)[:]

We define the initial augmented state, which consists of the gradients of
the loss wrt to `z_t1` and `θ` and `t1`. `ArrayPartition` from the
DifferentialEquations library allows us to combine arrays with different
dimensions for a single call to the ODE solver.
s_t1 = ArrayPartition(∂L∂z_t1, zero(θ), [-∂L∂t1])

Define the dynamics of the augmented state
function dsdt(ds, s, θ, t)

Compute the Jacobian matrices of `f` wrt `z`, `θ`, and `t`
_, back = Zygote.pullback(f, sol(t), θ, t)

Adjoint dynamics
d = back(-s.x[1])

Zygote returns `nothing` as a strong zero if the function is not
dependent on the variable, so we convert to zero for computation
get_derivative(∆, x) = (∆ == nothing ? zero(x) : ∆)
∆s = get_derivative.(d, ds.x[:])

Return the derivatives
for i in 1:3

ds.x[i] .= ∆s[i]
end

end

Solve ODE backwards
problem = ODEProblem(dsdt, s_t1, (t1, t0), θ)
solution = solve(problem, alg)
s_t0 = solution[end]

29

Return gradients
return (s_t0.x[1], s_t0.x[2], -s_t0.x[3][1], ∂L∂t1)

end

Appendix B2: Neural ODE Sine Approximation Example

We use a simple example of approximating the sine function to show how neural ODEs
can get stuck in ill-formed solution space, while traditional neural networks are still able to
perform well. Furthermore, we demonstrate how augmented neural ODEs can side-step this
issue, and enhance training in general.

==
Load Packages
==

include("./NeuralODE.jl")
using Plots

==
Generate Training Data
==

Random input from -5 to 5
X = rand(Float32, 300) * 10 .- 5 |> sort!

Sine function output with added noise
Y = sin.(X) .+ Float32(1e-3) * (rand(Float32, 300) .- 0.5f0)

Visualization of sine function and training data
xgrid = -5:0.1:5
function plot_data()

scatter(X, Y, label=:none, ms=3, alpha=0.5) # training data
plot!(xgrid, sin.(xgrid), label="sine", lw=2, c=:red) # sine function

end
pl1 = plot_data()

==
Neural Network Model
==

Define neural network model
nn_model = Chain(Dense(1, 8, tanh), Dense(8, 1))

Parameters to be optimized
nn_params = Flux.params(nn_model)

Sum of squared error as loss function
nn_loss() = sum(abs2, nn_model(reshape(X, 1, :)) - Y')

Set up to run for 100 epochs
nn_data = Iterators.repeated((), 100)

Optimizer
nn_opt = ADAM(0.1)

Store loss each epoch for visualization
nn_losses = Float32[]
nn_cb = () -> begin

push!(nn_losses, nn_loss())
end

30

Training loop
Flux.train!(nn_loss, nn_params, nn_data, nn_opt, cb=nn_cb)

Plot losses versus epoch
pl2 = plot(1:100, nn_losses, label="Neural Network Model Loss",

xlabel="Epoch", ylabel="Loss", c=:orange)

Network Visualization
plot!(pl1, xgrid, nn_model(xgrid')', c=:orange, lw=2,

xlabel="x", ylabel="y", label="Neural Network Model")

==
Naive Neural ODE Model
==

Derivative model
model = Chain(Dense(1, 8, tanh), Dense(8, 1))
θ, re = Flux.destructure(model)
dzdt(z, θ, t) = re(θ)(z)

Define Neural ODE
node_model = NeuralODE(dzdt, θ, [0.0f0, 10.0f0])

Parameters to be optimized, including time span
Flux.trainable(node::NeuralODE) = (node.θ, node.tspan)
node_params = Flux.params(node_model)

Sum of squared error as loss function
node_loss() = sum(abs2, node_model(reshape(X, 1, :))[end] - Y')

Set up to run for 100 epochs
node_data = Iterators.repeated((), 100)

Optimizer
node_opt = ADAM(0.1)

Store losses for visualization
node_losses = Float32[]
node_cb = () -> begin

push!(node_losses, node_loss())
end

Training loop
Flux.train!(node_loss, node_params, node_data, node_opt, cb=node_cb)

Plot losses versus epochs
plot!(pl2, 1:100, node_losses, label="Neural ODE Model Loss",

c=:green3, xlabel="Epoch", ylabel="Loss")

Neural network visualization
plot!(pl1, xgrid, node_model(xgrid')[end]', lw=2,

xlabel="x", ylabel="y", label="Neural ODE Model", c=:green3)

==
Augmented Neural ODE Model
==

Derivative model
model = Chain(Dense(4, 8, tanh), Dense(8, 4))
θ, re = Flux.destructure(model)
dzdt(z, θ, t) = re(θ)(z)

Define Augmented Neural ODE
anode_model = NeuralODE(dzdt, θ, [0.0f0, 10.0f0])

Parameters to be optimized, including time span
anode_params = Flux.params(anode_model)

31

Input augmentation
aug_X = hcat(X, zeros(eltype(X), length(X), 3)) |> transpose

Sum of squared error as loss function
anode_loss() = sum(abs2, anode_model(aug_X)[end][1, :] - Y)

Set up to run for 100 epochs
anode_data = Iterators.repeated((), 100)

Optimizer
anode_opt = ADAM(0.01)

Store losses for visualization
anode_losses = Float32[]
anode_cb = () -> begin

push!(anode_losses, anode_loss())
end

Training loop
Flux.train!(anode_loss, anode_params, anode_data, anode_opt, cb=anode_cb)

Plot losses versus epochs
plot!(pl1, 1:100, anode_losses, label="Augmented Neural ODE Loss",

xlabel="Epoch", ylabel="Loss", c=:purple)

Augmented Neural ODE visualization
aug_xgrid = hcat(xgrid, zeros(eltype(xgrid), length(xgrid), 3)) |> transpose
plot!(pl2, xgrid, anode_model(aug_xgrid)[end][1, :], lw=2, c=:purple,

xlabel="x", ylabel="y", label="Augmented Neural ODE Model")

Plot all visualizations
plot(pl1, pl2, legendfontsize=6, size=(800, 400))

==
Mathematical Neural ODE Model
==

Derivative model for [Y, dY]
θ = zeros(Float32, 2, 2)
dzdt(z, θ, t) = θ * z

Define ODE
ode_model = NeuralODE(dzdt, θ, [X[1], X[end]])

Parameters to be optimized
Flux.trainable(ode::NeuralODE) = (ode.θ,)
ode_params = Flux.params(ode_model)

Set up to run for 200 loops
ode_data = Iterators.repeated((), 200)

Approximation of first derivative from data set
dY = [(Y[i+1] - Y[i-1])/(X[i+1] - X[i-1]) for i in 2:length(X)-1]
pushfirst!(dY, (Y[2] - Y[1])/(X[2] - X[1]))
push!(dY, (Y[end] - Y[end-1])/(X[end] - X[end-1]))

Solve for all solutions at each time step X
predict() = ode_model([Y[1], dY[1]], saveat=X)

Sum of squared error as loss function
ode_loss() = begin

predicted = predict()
sum(abs2, hcat(predicted...) - [Y'; dY'])

end

Optimizer
ode_opt = ADAM(0.1)

32

Store losses for visualization
ode_losses = Float32[]
ode_cb = () -> begin

push!(ode_losses, ode_loss())
end

Training loop
Flux.train!(ode_loss, ode_params, ode_data, ode_opt, cb=ode_cb)

Plot losses versus epochs
pl3 = plot(1:200, ode_losses, label="Neural ODE Model Loss",

c=:orange, xlabel="Epoch", ylabel="Loss")

Mathematical Neural ODE visualization
pl4 = plot_data()

Ŷ = (predicted = predict(); [p[1] for p in predicted])

plot!(pl4, X, Ŷ, lw=2, c=:orange,
xlabel="x", ylabel="y", label="Neural ODE Model")

Show plots together
plot(pl4, pl3, size=(800, 400))

Appendix B3: Neural ODE Lotka-Volterra Example

We show how neural ODEs can be integrated with mathematical modeling to optimize pa-
rameters for some objectives with the Lotka-Volterra example adapted from the DiffEqFlux’s
tutorial using our own neural ODE framework. The result demonstrates the potentials of
neural ODEs in mathematical modeling out of the box. Future research can further look into
how mathematical models can be integrated with deep learning to enhance interpretability
of neural network models without sacrificing efficiency and effectiveness.

==
Load Packages
==

include("./NeuralODE.jl")
using Plots

==
Define and Solve Lotka-Volterra Model
==

Lotka-Volterra equations
function model(z, θ, t)

x, y = z
α, β, δ, γ = θ
return [α*x - β*x*y,

-δ*y + γ*x*y]
end

Starting populations at time 0
z0 = [1.0f0, 1.0f0]

Parameters
θ = [2.2f0, 1.0f0, 2.0f0, 0.4f0]

Define and solve ODE problem
problem = ODEProblem(model, z0, (0.0f0, 10.0f0), θ)
sol = solve(problem, Tsit5())

33

Visualize solution
plot(sol)

==
Neural ODE with Lotka-Volterra equations
==

Define Neural ODE layer
node = NeuralODE(model, θ, [0.0f0, 10.0f0])

Parameters to be optimized
params = Flux.params(node)

Sum of squared error from 1 as loss function
function loss()

zs = node(z0, saveat=0.1f0)
return sum(abs2, vcat(zs...) .- 1.0f0)

end

Set up the Neural ODE 100 to run for 100 epochs
data = Iterators.repeated((), 100)

Optimizer
opt = ADAM(0.1)

Update the plot of our populations each epoch
anim = Animation()
cb = () -> begin

plot(solve(remake(problem; p=node.θ), Tsit5()),
xlims=(0, 10), ylims=(0, 16))

frame(anim)
end

Training Loop
Flux.train!(loss, params, data, opt, cb=cb)

Training visualization
gif(anim)

34

	Introduction
	Artificial Neural Networks
	Example of a Neural Network
	The General Set-up
	Gradient Descent
	Back Propagation
	Neural Network Implementation in Julia

	Neural Ordinary Differential Equations
	Residual Neural Networks
	The General Set-Up
	Adjoint Method
	Strengths and Limitations
	Augmented Neural ODE
	Mathematical Modeling
	Neural ODE Implementation in Julia

	Conclusion

